Even een trivialiteitje ertussendoor.
In navolging van Mestre e.a. (1993) en als antwoord op deze uitdaging volgt hier het bewijs dat de Nederlandse spelling G triviaal is. We gaan uit van 26 letters (het kan ook met de IJ als 1 letter), en elk woord is een vermenigvuldiging van de letters. Dan volgt uit de gelijkheid pat=pad (qua uitspraak), dat t=d (t en d zijn triviaal). Op dezelfde wijze volgt uit lab=lap dat b en p triviaal zijn, en uit klak=claque volgt in ieder geval dat k en c triviaal zijn (bovendien volgt daaruit dat que=k, waarover later meer).
Uit fez=fes, lev=lef en lag=lach volgt dat z, s, v, f, g en h triviaal zijn (immers, ch=g en van c was al bewezen dat het triviaal is).
Uit impasse=inpassen volgt dat m en n triviaal zijn, en uit verrassen=verassen volgt eveneens dat r triviaal is. De trivialiteit van l volgt uit gril=grill (de uitspraak van grill met een wrijfklank aan het begin is standaard).
Ook de klinkers zijn alle triviaal. Uit eb=app volgt dat e en a triviaal zijn, uit roux=roe volgt dat ux triviaal is, hetgeen zowel u als x triviaal maakt. Uit oorschot=oirschot volgt dat i triviaal is, en uit o=eau volgt dat ook o triviaal is (voor wie denkt dat eau geen Nederlands woord is: het is onderdeel van het woord eau de cologne, en aangezien spaties geen onderdeel van de 26 letters vormen, geldt dat eau in G een woord is.)
Nu volgt uit claque=klak ook de trivialiteit van q. Immers, k=que en k, u en e zijn al triviaal. Dus moet q ook triviaal zijn.
Uit wij=wei volgt dat j triviaal is (want de andere letters waren al triviaal). In een stelsel met ij als aparte letter zou volgen dat ij triviaal is, en hebben we voor de trivialiteit van j bijvoorbeeld yo=Jo nodig.
Ten slotte kan de trivialiteit van w bewezen worden door de gelijkheid verkwist=verquizt. Het woord verquizt is een regelmatig gevormd werkwoord afgeleid van het voorvoegsel ver- en een zelfstandig naamwoord quiz (betekenis: “tot een quiz maken”).
Hieruit volgt dat de Nederlandse spelling G triviaal is.